[Electric Circuit] Variable-Frequency Network Performance
1. Variable Frequency-Response Analysis
The effect of varying frequency on elements - the resistor, inducor, and capacitor
\[\textbf{Z}_R = R\angle{0^{\circ}} \\ \textbf{Z}_L = j\omega L= \omega L \angle{0^{\circ}} \\ \textbf{Z}_C = \dfrac{1}{j\omega C} = \dfrac{1}{\omega C \angle{90^{\circ}}}\]RLC series network
Substitution $s = j\omega$
\[\textbf{Z}_{eq} = R + j\omega L + \dfrac{1}{j\omega C} = \dfrac{(j\omega)^2LC + j\omega RC + 1}{j\omega C} = \dfrac{s^2LC + sRC + 1}{sC}\]Example 11.1
Network functions
- Driving point function
Poles and Zeros
2. Sinusoidal Frequency Analysis (Bode Plot)
In a sinusoidal steady-state analysis, the network function can be expressed as
\[\textbf{H}(j\omega) = M(\omega) e^{j \phi(\omega)} \\\]- Magnitude and phase characteristies : two functions in which the response varies with the input frequency $\omega$
$M(\omega) = | \textbf{H}(\omega) | $ |
$\phi(\omega)$ is phase
Frequency Response Using a Bode Plot
- Bode plot : plotting the network characteristics on a semilog scale
if the powers are absorbed by two equal resisters
In the sinusoidal steady-state case,
\[H(j\omega) = \dfrac{K_0(j\omega)^{\pm N}(1 + j\omega\tau_1)[1 + 2\xi(j\omega\tau_3) + (j\omega\tau_3)^2] ...}{(1 + j\omega\tau_a)[1 + 2\xi(j\omega\tau_b) + (j\omega\tau_b)^2] ...}\]This equatation contain following typical factors:
- A frequency-independent factor $K_0 > 0$
- Poles or zeros at the origin form $j\omega$; that is $(jw)^{+N}$ for zeros and $(j\omega)^{-N}$ for poles
- Poles or zeros of the form $(1 + j\omega\tau)$
- Quadratic poles or zeros of the form $1 + 2\xi(j\omega\tau) + (j\omega\tau)^2$
Taking the logarithm of the magitude of the function $\textbf{H}(j\omega)$
\[20\log_{10} |\textbf{H}(j\omega)| = 20\log_{10} |K_0| \pm 20N\log_{10}|1 + j\omega\tau_1| + 20\log_{10}|1 + 2\xi_3(j\omega\tau_3) + (j\omega\tau_3)^2| + ... \\ -20\log_{10} |1 + j\omega\tau_a| - 20log_{10} |1 + 2\xi_b(j\omega\tau_b) + (j\omega\tau_b)^2|\]The phase angle for $\textbf{H}(j\omega)$
\[\angle{\textbf{H}(j\omega)} = 0 \pm N(90^{\circ}) + \tan^{-1}\omega\tau_1 + \tan^{-1}(\dfrac{2\xi_a\omega\tau_3}{1 - \omega^2\tau_3^2}) + ... \\ - \tan^{-1}\omega\tau_a - \tan^{-1}\dfrac{2\xi_b\omega\tau_b}{1-\omega^2\tau_b^2} ...\]Constant Term
\[K_0\]
A constant magnitude with zero phase shift
\[20\log_{10} K_0\]
Poles or Zero at the Origin
\[(j\omega)^{\pm N}\]The magnitude and the phase of the function
\[\pm 20N \log_{10} \omega, \; \pm N(90^{\circ})\]
Simple Pole or Zero
\[(1 + j\omega\tau)\]The magnitude and the phase of the function
\[20\log_{10} |1 + j\omega\tau|, \; \tan^{-1}\omega\tau\] \[if \; \omega\tau \ll 1, \; 20\log_{10} |1 + j\omega\tau| \approx 0 \\ if \; \omega\tau \gg 1, \; 20\log_{10} |1 + j\omega\tau| \approx 20\log \omega\tau \\ if \; \omega\tau = 1, \; \; 20\log_{10} |1 + j\omega\tau| = \; 20\log_{10} 2^{1/2} = 3dB\]
- Break frequency
Quadratic Poles or Zeros
\[1 + 2\xi(j\omega\tau) + (j\omega\tau)^2\]The magnitude and the phase of the function
\[20log_{10} |1 + 2\xi(j\omega\tau) + (j\omega\tau)^2|, \; \tan^{-1}\dfrac{2\xi\omega\tau}{1-\omega^2\tau^2}\] \[if \; \omega\tau \ll 1, \; 20log_{10} |1 + 2\xi(j\omega\tau) + (j\omega\tau)^2| \approx 0 \\ if \; \omega\tau \gg 1, \; 20log_{10} |1 + 2\xi(j\omega\tau) + (j\omega\tau)^2| \approx 40\log_{10} \omega\tau \\\]
- Damping ratio : $\xi$
3. Resonant Circuits
Series Resonance
The input impedence for the series RLC circuits is
\[Z(jw) = R + jwL + \dfrac{1}{jwC} = R + j(wL - \dfrac{1}{wC})\]$wL = \dfrac{1}{wC}$에서 $w_0 = \dfrac{1}{\sqrt{LC}}$, $Z(j w_0) = R$
- Resonant frequency : the impedence of the circuit is purely real
- Resonance
- Quality factor
We can develop a general expression for the ratio of $\dfrac{V_R}{V1}$(gain) for the network in terms of $Q, \omega$, and $\omega_{0}$
\[G(j\omega) = \dfrac{V_R}{V_1} = \dfrac{IR}{IZ} \\ = \dfrac{R}{R + j \omega L + 1/j \omega C} \\ = \dfrac{1}{1 + j(1/R)(\omega L - 1/ \omega C)} \\ = \dfrac{1}{1 + jQ(\omega L / RQ - 1/ \omega CRQ)} \\ = \dfrac{1}{1 + jQ(\omega / \omega_{0} - \omega_{0} / \omega)} \\\] \[M(\omega) = \dfrac{1}{1 + Q^2 (\omega / \omega_{0} - \omega_{0} / \omega)^{1/2}}, \phi(\omega) = - \arctan Q(\dfrac{\omega}{\omega_{0}} - \dfrac{\omega_{0}}{\omega})\]- Bandwidth : difference between the two half-power frequencies
witch illustrates that the resonant frequency is the geometric mean of the two half-power frequencies
The frequency selectivity of the circuit is determined by the value of Q. A high-Q circuit has a small bandwidth and, therefore, the circuit is very selective.
Q has a more general meaning that we can explore via an energy analysis of the series resonant circuit. The capacitor voltage at resonance
\[V_c = \dfrac{1}{j \omega_{0} C} I = \dfrac{1}{j \omega_{0} C} \dfrac{V_m}{R} \angle 0 = \dfrac{V_m}{\omega_{0} R C} \angle-90' \\ v(t) = \dfrac{V_m}{\omega_{0} R C} \cos(\omega_{0} t - 90')\] \[w_L(t) = \dfrac{1}{2} L i^2(t) = \dfrac{1}{2} L (\dfrac{V_m}{R} \cos \omega_{0} t)^2 = \dfrac{L V_m^2}{2 R^2} \cos^2\omega_{0} t\] \[w_C(t) = \dfrac{1}{2} C v_c^2(t) = \dfrac{1}{2} C (\dfrac{V_m}{\omega_{0} R C} \cos(\omega_{0} t - 90'))^2 = \dfrac{V_m^2}{2 \omega_{0}^2 R^2 C} \sin^2(\omega_{0} t) \\ = \dfrac{V_m^2}{2 \dfrac{1}{LC} R^2 C} \sin^2(\omega_{0} t) = \dfrac{V_m^2 L}{2 R^2 } \sin^2\omega_{0} t\]The total energy stored in the circuit is constant
\[\dfrac{L V_m^2}{2 R^2} \cos^2\omega_{0} t + \dfrac{V_m^2 L}{2 R^2 } \sin^2\omega_{0} t = \dfrac{V_m^2 L}{2 R^2 }\]When a circuit is in resonance, there is a continuous exchange of energy between the magnetic field of the inductor and the electric field of the capacitor.
The maximum energy stored in the RLC circuit at resonance is $w_s = \dfrac{V_m^2 L}{2 R^2}$.
The energy dissipated per cycle in this series resonant circuit is
\[W_D = \int_{0}^{T}p_R dt = \int_{0}^{T} i^2(t) R dt = \int_{0}^{T} (\dfrac{V_m}{R} \cos \omega_{0} t)^2 dt = \dfrac{V_m^2 T}{2 R}\] \[\dfrac{W_S}{W_D} = \dfrac{\dfrac{V_m^2 L}{2 R^2}}{\dfrac{V_m^2 T}{2 R}} = \dfrac{L}{RT} = \dfrac{L}{R (\dfrac{2 \pi}{\omega})} = \dfrac{\omega_{0} L}{2 \pi R}\] \[Q = \dfrac{\omega_{0} L}{R}= 2 \pi \dfrac{W_S}{W_D}\]The voltage across the capacitor or inductor in the series resonant circuit could be equal to Q times the magnitude of the source voltage.
\[\left| V_0 \right| = \left| \dfrac{1/j \omega C}{R + j \omega L + 1/j \omega C} V_S \right|\\ = \left| \dfrac{V_S}{1 - \omega^2 LC + j \omega CR} \right|\\ = \dfrac{\left| V_S \right|}{\sqrt{(1 - \omega^2 LC)^2 +(\omega CR)^2}}\]We might assume that the maximum value of the output voltage would occur at the resonance frequency $\omega_{0}$. Let us see whether this assumptopm is correct.
\[\dfrac{d \left| V_0 \right|}{d \omega} = 0 \\ \omega_{max} = \sqrt{\dfrac{1}{LC} - \dfrac{1}{2} (\dfrac{R}{L})^2} = \sqrt{\omega_{0}^2 - \dfrac{1}{2} (\dfrac{\omega_{0}}{Q})^2} = \omega_{0} \sqrt{1 - \dfrac{1}{2Q^2}} \\\]Clearly, $\omega_{max} \neq \omega_0$; however, $\omega_0$ closely approximated $\omega_{max}$ if the Q is high
\[\left| V_0 \right|_{max} = \dfrac{\left| V_S \right|}{\sqrt{(1 - \omega_{max}^2 LC)^2 +(\omega_{max} CR)^2}} \\ = \dfrac{\left| V_S \right|}{\sqrt{(1 - (\omega_{0} \sqrt{1 - \dfrac{1}{2Q^2}})^2 \dfrac{1}{\omega_0^2})^2 +(\omega_{0} \sqrt{1 - \dfrac{1}{2Q^2}} \dfrac{1}{\omega_0 Q})^2}} \\ = \dfrac{\left| V_S \right|}{\sqrt{\dfrac{1}{4 Q^4} + (\dfrac{1}{Q^2} - \dfrac{1}{2 Q^4})}} = \dfrac{Q \left| V_S \right|}{\sqrt{1 - \dfrac{1}{4Q^2}}} \\\]we see that $\left | V_0 \right | _{max} = Q \left | V_S \right | $ if the nwtwork has a high Q. |
Parallel Resonance(병렬 공진)
\[I_S = I_G + I _C + I_L = V_SG + j \omega C V_S + \dfrac{V_S}{j \omega L} = V_S [G + j(\omega C - \dfrac{1}{\omega L})]\]Resonance frequency
\[\omega_0 = \dfrac{1}{\sqrt{LC}}\]Half-power frequencies
\[\omega_{LO} = -\dfrac{1}{2RC} + \sqrt{\dfrac{1}{(2RC)^2} + \dfrac{1}{LC}} \\ \omega_{HI} = \dfrac{1}{2RC} + \sqrt{\dfrac{1}{(2RC)^2} + \dfrac{1}{LC}}\]Bandwidth
\[BW = \omega_{HI} - \omega_{LO} = \dfrac{1}{RC}\]Quality factor
\[Q = \dfrac{\omega_0}{BW} = R \sqrt{\dfrac{C}{L}}\]Practical parallel resonant circuit
4. Scaling
In this section we illustrate how to scale the circuits to make the parameters more realistic
- Magnitute scaling(or impedence scaling) : multiplying the impedence of each element by a scale factor $K_M$
since
\[\omega_0' = \dfrac{1}{\sqrt{L'C'}} = \dfrac{1}{\sqrt{K_M L \cdot \dfrac{C}{K_M}}} = \dfrac{1}{\sqrt{LC}} = \omega_0\]and
\[Q' = \dfrac{\omega_0 L'}{R'} = \dfrac{\omega_0 K_M L}{K_M R} = \dfrac{\omega_0 L}{R} = Q\]The resonant frequency, the quality factor and, therefore, the bandwidth are unaffected by by magitude scaling.
- Frequency scaling :
병렬 회로에서도 직렬 회로에서 처럼 동일하게 성립할까?
5. Filter Networks
Passive Filters
A filter network is generally designed to pass signals with a specific frequency range and reject or attenuate signals whose frequency spectrum is outside this pass-band
- Low-pass filter
- high-pass filter
- band-pass filter
- band-rejection filter
Active Filters
Higher Order Filters
Butterworth Filters
OTA Filters
6. Application Examples
7. Design Examples
궁금한 점
위상차의 정의가 뭘까?
차 : 큰 거 - 작은 거
https://blog.naver.com/seo0511/10153075056